Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Med Chem Lett ; 14(12): 1791-1799, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38116438

RESUMEN

Novel bacterial topoisomerase inhibitors (NBTIs) make up a promising new class of antibiotics with the potential to combat the growing threat of antimicrobial resistance. Two key challenges in the development of NBTIs have been to obtain broad spectrum activity against multidrug-resistant Gram-negative bacteria and to diminish inhibition of the hERG cardiac ion channel. Here we report the optimization of a series of NBTIs bearing a novel indane DNA intercalating moiety. The addition of a basic, polar side chain connected to the indane by an ether or an N-linked secondary amide linkage together with a lipophilicity-lowering modification of the enzyme binding moiety led to compounds such as 2a and 2g which showed excellent broad spectrum potency and minimal hERG inhibition. Compound 2a demonstrated robust bactericidal in vivo activity in a mouse lung infection model with the strain P. aeruginosa ATCC 27853 which is resistant to several clinically relevant antibiotics. Rodent pharmacokinetic studies with 2a revealed an unusual profile characterized by rapid tissue distribution and a prolonged, flat terminal phase. This profile precluded further development of these compounds as potential new antibiotics.

2.
bioRxiv ; 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37425702

RESUMEN

Comprehensive knowledge of mechanisms driving the acquisition of antimicrobial resistance is essential for the development of new drugs with minimized resistibility. To gain this knowledge, we combine experimental evolution in a continuous culturing device, the morbidostat, with whole genome sequencing of evolving cultures followed by characterization of drug-resistant isolates. Here, this approach was used to assess evolutionary dynamics of resistance acquisition against DNA gyrase/topoisomerase TriBE inhibitor GP6 in Escherichia coli and Acinetobacter baumannii. The evolution of GP6 resistance in both species was driven by a combination of two classes of mutational events: (i) amino acid substitutions near the ATP-binding site of the GyrB subunit of the DNA gyrase target; and (ii) various mutations and genomic rearrangements leading to upregulation of efflux pumps, species-specific (AcrAB/TolC in E. coli and AdeIJK in A. baumannii) and shared by both species (MdtK). A comparison with the experimental evolution of resistance to ciprofloxacin (CIP), previously performed using the same workflow and strains, revealed fundamental differences between these two distinct classes of compounds. Most notable were non-overlapping spectra of target mutations and distinct evolutionary trajectories that, in the case of GP6, were dominated by upregulation of efflux machinery prior to (or even in lieu) of target modification. Most of efflux-driven GP6-resistant isolates of both species displayed a robust cross-resistance to CIP, while CIP-resistant clones showed no appreciable increase in GP6-resistance.

3.
ACS Med Chem Lett ; 14(7): 993-998, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37465290

RESUMEN

The rise of multidrug-resistant (MDR) Gram-negative bacteria is a major global health problem necessitating the discovery of new classes of antibiotics. Novel bacterial topoisomerase inhibitors (NBTIs) target the clinically validated bacterial type II topoisomerases with a distinct binding site and mechanism of action to fluoroquinolone antibiotics, thus avoiding cross-resistance to this drug class. Here we report the discovery of a series of NBTIs incorporating a novel indane DNA binding moiety. X-ray cocrystal structures of compounds 2 and 17a bound to Staphylococcus aureus DNA gyrase-DNA were determined, revealing specific interactions with the enzyme binding pocket at the GyrA dimer interface and a long-range electrostatic interaction between the basic amine in the linker and the carboxylate of Asp83. Exploration of the structure-activity relationship within the series led to the identification of lead compound 18c, which showed potent broad-spectrum activity against a panel of MDR Gram-negative bacteria.

5.
mBio ; 12(3): e0098721, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34154405

RESUMEN

Resistance to the broad-spectrum antibiotic ciprofloxacin is detected at high rates for a wide range of bacterial pathogens. To investigate the dynamics of ciprofloxacin resistance development, we applied a comparative resistomics workflow for three clinically relevant species of Gram-negative bacteria: Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa. We combined experimental evolution in a morbidostat with deep sequencing of evolving bacterial populations in time series to reveal both shared and unique aspects of evolutionary trajectories. Representative clone characterization by sequencing and MIC measurements enabled direct assessment of the impact of mutations on the extent of acquired drug resistance. In all three species, we observed a two-stage evolution: (i) early ciprofloxacin resistance reaching 4- to 16-fold the MIC for the wild type, commonly as a result of single mutations in DNA gyrase target genes (gyrA or gyrB), and (ii) additional genetic alterations affecting the transcriptional control of the drug efflux machinery or secondary target genes (DNA topoisomerase parC or parE). IMPORTANCE The challenge of spreading antibiotic resistance calls for systematic efforts to develop more "irresistible" drugs based on a deeper understanding of dynamics and mechanisms of antibiotic resistance acquisition. To address this challenge, we have established a comparative resistomics approach which combines experimental evolution in a continuous-culturing device, the morbidostat, with ultradeep sequencing of evolving microbial populations to identify evolutionary trajectories (mutations and genome rearrangements) leading to antibiotic resistance over a range of target pathogens. Here, we report the comparative resistomics study of three Gram-negative bacteria (Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa), which revealed shared and species-specific aspects of the evolutionary landscape leading to robust resistance against the clinically important antibiotic ciprofloxacin. Despite some differences between morbidostat-deduced mutation profiles and those observed in clinical isolates of individual species, a cross-species comparative resistomics approach allowed us to recapitulate all types of clinically relevant ciprofloxacin resistance mechanisms. This observation supports the anticipated utility of this approach in guiding rational optimization of treatment regimens for current antibiotics and the development of novel antibiotics with minimized resistance propensities.


Asunto(s)
Antibacterianos/farmacología , Ciprofloxacina/farmacología , Farmacorresistencia Bacteriana/genética , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/genética , Sustitución de Aminoácidos , Bacterias Gramnegativas/clasificación , Pruebas de Sensibilidad Microbiana , Mutación/efectos de los fármacos
6.
J Med Chem ; 63(17): 9623-9649, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32787097

RESUMEN

The rise of multidrug resistant (MDR) Gram-negative (GN) pathogens and the decline of available antibiotics that can effectively treat these severe infections are a major threat to modern medicine. Developing novel antibiotics against MDR GN pathogens is particularly difficult as compounds have to permeate the GN double membrane, which has very different physicochemical properties, and have to circumvent a plethora of resistance mechanisms such as multiple efflux pumps and target modifications. The bacterial type II topoisomerases DNA gyrase (GyrA2B2) and Topoisomerase IV (ParC2E2) are highly conserved targets across all bacterial species and validated in the clinic by the fluoroquinolones. Dual inhibitors targeting the ATPase domains (GyrB/ParE) of type II topoisomerases can overcome target-based fluoroquinolone resistance. However, few ATPase inhibitors are active against GN pathogens. In this study, we demonstrated a successful strategy to convert a 2-carboxamide substituted azaindole chemical scaffold with only Gram-positive (GP) activity into a novel series with also potent activity against a range of MDR GN pathogens. By systematically fine-tuning the many physicochemical properties, we identified lead compounds such as 17r with a balanced profile showing potent GN activity, high aqueous solubility, and desirable PK features. Moreover, we showed the bactericidal efficacy of 17r using a neutropenic mouse thigh infection model.


Asunto(s)
Carbolinas/química , Carbolinas/farmacología , Girasa de ADN/metabolismo , Topoisomerasa de ADN IV/metabolismo , Diseño de Fármacos , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , Girasa de ADN/química , Topoisomerasa de ADN IV/química , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Escherichia coli/enzimología , Ratones , Modelos Moleculares , Conformación Proteica , Staphylococcus aureus/enzimología
7.
Sci Rep ; 9(1): 5013, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30899034

RESUMEN

Identification of novel antibiotics remains a major challenge for drug discovery. The present study explores use of phenotypic readouts beyond classical antibacterial growth inhibition adopting a combined multiparametric high content screening and genomic approach. Deployment of the semi-automated bacterial phenotypic fingerprint (BPF) profiling platform in conjunction with a machine learning-powered dataset analysis, effectively allowed us to narrow down, compare and predict compound mode of action (MoA). The method identifies weak antibacterial hits allowing full exploitation of low potency hits frequently discovered by routine antibacterial screening. We demonstrate that BPF classification tool can be successfully used to guide chemical structure activity relationship optimization, enabling antibiotic development and that this approach can be fruitfully applied across species. The BPF classification tool could be potentially applied in primary screening, effectively enabling identification of novel antibacterial compound hits and differentiating their MoA, hence widening the known antibacterial chemical space of existing pharmaceutical compound libraries. More generally, beyond the specific objective of the present work, the proposed approach could be profitably applied to a broader range of diseases amenable to phenotypic drug discovery.


Asunto(s)
Antibacterianos/uso terapéutico , Bacterias/efectos de los fármacos , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Antibacterianos/química , Bacterias/patogenicidad , Evaluación Preclínica de Medicamentos/métodos , Humanos , Aprendizaje Automático
8.
Biochem Biophys Res Commun ; 484(3): 612-617, 2017 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-28153719

RESUMEN

The product of the human C21orf57 (huYBEY) gene is predicted to be a homologue of the highly conserved YbeY proteins found in nearly all bacteria. We show that, like its bacterial and chloroplast counterparts, the HuYbeY protein is an RNase and that it retains sufficient function in common with bacterial YbeY proteins to partially suppress numerous aspects of the complex phenotype of an Escherichia coli ΔybeY mutant. Expression of HuYbeY in Saccharomyces cerevisiae, which lacks a YbeY homologue, results in a severe growth phenotype. This observation suggests that the function of HuYbeY in human cells is likely regulated through specific interactions with partner proteins similarly to the way YbeY is regulated in bacteria.


Asunto(s)
Cloroplastos/química , Cloroplastos/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Evolución Molecular , Metaloproteínas/química , Metaloproteínas/genética , Ribonucleasas/química , Ribonucleasas/genética , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Secuencia de Bases , Secuencia Conservada/genética , Datos de Secuencia Molecular
9.
mBio ; 7(6)2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27834201

RESUMEN

YbeY is part of a core set of RNases in Escherichia coli and other bacteria. This highly conserved endoribonuclease has been implicated in several important processes such as 16S rRNA 3' end maturation, 70S ribosome quality control, and regulation of mRNAs and small noncoding RNAs, thereby affecting cellular viability, stress tolerance, and pathogenic and symbiotic behavior of bacteria. Thus, YbeY likely interacts with numerous protein or RNA partners that are involved in various aspects of cellular physiology. Using a bacterial two-hybrid system, we identified several proteins that interact with YbeY, including ribosomal protein S11, the ribosome-associated GTPases Era and Der, YbeZ, and SpoT. In particular, the interaction of YbeY with S11 and Era provides insight into YbeY's involvement in the 16S rRNA maturation process. The three-way association between YbeY, S11, and Era suggests that YbeY is recruited to the ribosome where it could cleave the 17S rRNA precursor endonucleolytically at or near the 3' end maturation site. Analysis of YbeY missense mutants shows that a highly conserved beta-sheet in YbeY-and not amino acids known to be important for YbeY's RNase activity-functions as the interface between YbeY and S11. This protein-interacting interface of YbeY is needed for correct rRNA maturation and stress regulation, as missense mutants show significant phenotypic defects. Additionally, structure-based in silico prediction of putative interactions between YbeY and the Era-30S complex through protein docking agrees well with the in vivo results. IMPORTANCE: Ribosomes are ribonucleoprotein complexes responsible for a key cellular function, protein synthesis. Their assembly is a highly coordinated process of RNA cleavage, RNA posttranscriptional modification, RNA conformational changes, and protein-binding events. Many open questions remain after almost 5 decades of study, including which RNase is responsible for final processing of the 16S rRNA 3' end. The highly conserved RNase YbeY, belonging to a core set of RNases essential in many bacteria, was previously shown to participate in 16S rRNA processing and ribosome quality control. However, detailed mechanistic insight into YbeY's ribosome-associated function has remained elusive. This work provides the first evidence that YbeY is recruited to the ribosome through interaction with proteins involved in ribosome biogenesis (i.e., ribosomal protein S11, Era). In addition, we identified key residues of YbeY involved in the interaction with S11 and propose a possible binding mode of YbeY to the ribosome using in silico docking.


Asunto(s)
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Metaloproteínas/genética , Metaloproteínas/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico 16S/metabolismo , Ribosomas/metabolismo , Estrés Fisiológico , Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/aislamiento & purificación , Proteínas de Unión al GTP/metabolismo , Regulación Bacteriana de la Expresión Génica , Simulación del Acoplamiento Molecular , Mutación Missense , Unión Proteica , ARN Bacteriano/genética , ARN Bacteriano/aislamiento & purificación , ARN Bacteriano/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/aislamiento & purificación , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/aislamiento & purificación , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
10.
PLoS Pathog ; 10(6): e1004175, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24901994

RESUMEN

YbeY, a highly conserved protein, is an RNase in E. coli and plays key roles in both processing of the critical 3' end of 16 S rRNA and in 70 S ribosome quality control under stress. These central roles account for YbeY's inclusion in the postulated minimal bacterial genome. However, YbeY is not essential in E. coli although loss of ybeY severely sensitizes it to multiple physiological stresses. Here, we show that YbeY is an essential endoribonuclease in Vibrio cholerae and is crucial for virulence, stress regulation, RNA processing and ribosome quality control, and is part of a core set of RNases essential in most representative pathogens. To understand its function, we analyzed the rRNA and ribosome profiles of a V. cholerae strain partially depleted for YbeY and other RNase mutants associated with 16 S rRNA processing; our results demonstrate that YbeY is also crucial for 16 S rRNA 3' end maturation in V. cholerae and that its depletion impedes subunit assembly into 70 S ribosomes. YbeY's importance to V. cholerae pathogenesis was demonstrated by the complete loss of mice colonization and biofilm formation, reduced cholera toxin production, and altered expression levels of virulence-associated small RNAs of a V. cholerae strain partially depleted for YbeY. Notably, the ybeY genes of several distantly related pathogens can fully complement an E. coli ΔybeY strain under various stress conditions, demonstrating the high conservation of YbeY's activity in stress regulation. Taken together, this work provides the first comprehensive exploration of YbeY's physiological role in a human pathogen, showing its conserved function across species in essential cellular processes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endorribonucleasas/metabolismo , Procesamiento de Término de ARN 3' , ARN Bacteriano/metabolismo , ARN Ribosómico/metabolismo , Estrés Fisiológico , Vibrio cholerae/enzimología , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Cólera/enzimología , Cólera/inmunología , Cólera/metabolismo , Cólera/microbiología , Toxina del Cólera/biosíntesis , Secuencia Conservada , Endorribonucleasas/química , Endorribonucleasas/genética , Regulación Bacteriana de la Expresión Génica , Inmunidad Mucosa , Mucosa Intestinal/crecimiento & desarrollo , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Ratones , Mutación , Filogenia , Vibrio cholerae/inmunología , Vibrio cholerae/patogenicidad , Vibrio cholerae/fisiología , Virulencia , Factores de Virulencia/biosíntesis
11.
Proc Natl Acad Sci U S A ; 111(20): E2100-9, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24803433

RESUMEN

Deeper understanding of antibiotic-induced physiological responses is critical to identifying means for enhancing our current antibiotic arsenal. Bactericidal antibiotics with diverse targets have been hypothesized to kill bacteria, in part by inducing production of damaging reactive species. This notion has been supported by many groups but has been challenged recently. Here we robustly test the hypothesis using biochemical, enzymatic, and biophysical assays along with genetic and phenotypic experiments. We first used a novel intracellular H2O2 sensor, together with a chemically diverse panel of fluorescent dyes sensitive to an array of reactive species to demonstrate that antibiotics broadly induce redox stress. Subsequent gene-expression analyses reveal that complex antibiotic-induced oxidative stress responses are distinct from canonical responses generated by supraphysiological levels of H2O2. We next developed a method to quantify cellular respiration dynamically and found that bactericidal antibiotics elevate oxygen consumption, indicating significant alterations to bacterial redox physiology. We further show that overexpression of catalase or DNA mismatch repair enzyme, MutS, and antioxidant pretreatment limit antibiotic lethality, indicating that reactive oxygen species causatively contribute to antibiotic killing. Critically, the killing efficacy of antibiotics was diminished under strict anaerobic conditions but could be enhanced by exposure to molecular oxygen or by the addition of alternative electron acceptors, indicating that environmental factors play a role in killing cells physiologically primed for death. This work provides direct evidence that, downstream of their target-specific interactions, bactericidal antibiotics induce complex redox alterations that contribute to cellular damage and death, thus supporting an evolving, expanded model of antibiotic lethality.


Asunto(s)
Antibacterianos/farmacología , Catalasa/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Oxidación-Reducción , Antioxidantes/química , Respiración de la Célula , Reparación del ADN , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes/metabolismo , Peróxido de Hidrógeno/química , Mutagénesis , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo , Oxígeno/metabolismo , Plásmidos/metabolismo , Especies Reactivas de Oxígeno
12.
Microbiologyopen ; 2(6): 976-87, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24311555

RESUMEN

A core component of the α-proteobacterial general stress response (GSR) is the extracytoplasmic function (ECF) sigma factor EcfG, exclusively present in this taxonomic class. Half of the completed α-proteobacterial genome sequences contain two or more copies of genes encoding σ(EcfG) -like sigma factors, with the primary copy typically located adjacent to genes coding for a cognate anti-sigma factor (NepR) and two-component response regulator (PhyR). So far, the widespread occurrence of additional, non-canonical σ(EcfG) copies has not satisfactorily been explained. This study explores the hierarchical relation between Rhizobium etli σ(EcfG1) and σ(EcfG2) , canonical and non-canonical σ(EcfG) proteins, respectively. Contrary to reports in other species, we find that σ(EcfG1) and σ(EcfG2) act in parallel, as nodes of a complex regulatory network, rather than in series, as elements of a linear regulatory cascade. We demonstrate that both sigma factors control unique yet also shared target genes, corroborating phenotypic evidence. σ(EcfG1) drives expression of rpoH2, explaining the increased heat sensitivity of an ecfG1 mutant, while katG is under control of σ(EcfG2) , accounting for reduced oxidative stress resistance of an ecfG2 mutant. We also identify non-coding RNA genes as novel σ(EcfG) targets. We propose a modified model for GSR regulation in R. etli, in which σ(EcfG1) and σ(EcfG2) function largely independently. Based on a phylogenetic analysis and considering the prevalence of α-proteobacterial genomes with multiple σ(EcfG) copies, this model may also be applicable to numerous other species.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Rhizobium etli/fisiología , Factor sigma/metabolismo , Estrés Fisiológico , Modelos Biológicos , Rhizobium etli/genética
13.
Mol Plant Microbe Interact ; 24(12): 1553-61, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21809980

RESUMEN

Rhizobium etli occurs either in a nitrogen-fixing symbiosis with its host plant, Phaseolus vulgaris, or free-living in the soil. During both conditions, the bacterium has been suggested to reside primarily in a nongrowing state. Using genome-wide transcriptome profiles, we here examine the molecular basis of the physiological adaptations of rhizobia to nongrowth inside and outside of the host. Compared with exponentially growing cells, we found an extensive overlap of downregulated growth-associated genes during both symbiosis and stationary phase, confirming the essentially nongrowing state of nitrogen-fixing bacteroids in determinate nodules that are not terminally differentiated. In contrast, the overlap of upregulated genes was limited. Generally, actively growing cells have hitherto been used as reference to analyze symbiosis-specific expression. However, this prevents the distinction between differential expression arising specifically from adaptation to a symbiotic lifestyle and features associated with nongrowth in general. Using stationary phase as the reference condition, we report a distinct transcriptome profile for bacteroids, containing 203 induced and 354 repressed genes. Certain previously described symbiosis-specific characteristics, such as the downregulation of amino acid metabolism genes, were no longer observed, indicating that these features are more likely due to the nongrowing state of bacteroids rather than representing bacteroid-specific physiological adaptations.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/genética , Fijación del Nitrógeno/genética , Phaseolus/fisiología , Rhizobium etli/genética , Simbiosis/genética , Transcriptoma/genética , Regulación hacia Abajo , Perfilación de la Expresión Génica , Genes Bacterianos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Phaseolus/microbiología , Rhizobium etli/crecimiento & desarrollo , Rhizobium etli/fisiología , Regulación hacia Arriba
14.
Genome Biol ; 12(2): R17, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21324192

RESUMEN

BACKGROUND: The alarmone (p)ppGpp mediates a global reprogramming of gene expression upon nutrient limitation and other stresses to cope with these unfavorable conditions. Synthesis of (p)ppGpp is, in most bacteria, controlled by RelA/SpoT (Rsh) proteins. The role of (p)ppGpp has been characterized primarily in Escherichia coli and several Gram-positive bacteria. Here, we report the first in-depth analysis of the (p)ppGpp-regulon in an α-proteobacterium using a high-resolution tiling array to better understand the pleiotropic stress phenotype of a relA/rsh mutant. RESULTS: We compared gene expression of the Rhizobium etli wild type and rsh (previously rel) mutant during exponential and stationary phase, identifying numerous (p)ppGpp targets, including small non-coding RNAs. The majority of the 834 (p)ppGpp-dependent genes were detected during stationary phase. Unexpectedly, 223 genes were expressed (p)ppGpp-dependently during early exponential phase, indicating the hitherto unrecognized importance of (p)ppGpp during active growth. Furthermore, we identified two (p)ppGpp-dependent key regulators for survival during heat and oxidative stress and one regulator putatively involved in metabolic adaptation, namely extracytoplasmic function sigma factor EcfG2/PF00052, transcription factor CH00371, and serine protein kinase PrkA. CONCLUSIONS: The regulatory role of (p)ppGpp in R. etli stress adaptation is far-reaching in redirecting gene expression during all growth phases. Genome-wide transcriptome analysis of a strain deficient in a global regulator, and exhibiting a pleiotropic phenotype, enables the identification of more specific regulators that control genes associated with a subset of stress phenotypes. This work is an important step toward a full understanding of the regulatory network underlying stress responses in α-proteobacteria.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Rhizobium etli/genética , Estrés Fisiológico/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos , Guanosina Pentafosfato/genética , Guanosina Tetrafosfato/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Pequeño no Traducido , Rhizobium etli/crecimiento & desarrollo , Transcriptoma
15.
BMC Genomics ; 11: 53, 2010 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-20089193

RESUMEN

BACKGROUND: Non-coding RNAs (ncRNAs) play a crucial role in the intricate regulation of bacterial gene expression, allowing bacteria to quickly adapt to changing environments. In the past few years, a growing number of regulatory RNA elements have been predicted by computational methods, mostly in well-studied gamma-proteobacteria but lately in several alpha-proteobacteria as well. Here, we have compared an extensive compilation of these non-coding RNA predictions to intergenic expression data of a whole-genome high-resolution tiling array in the soil-dwelling alpha-proteobacterium Rhizobium etli. RESULTS: Expression of 89 candidate ncRNAs was detected, both on the chromosome and on the six megaplasmids encompassing the R. etli genome. Of these, 11 correspond to functionally well characterized ncRNAs, 12 were previously identified in other alpha-proteobacteria but are as yet uncharacterized and 66 were computationally predicted earlier but had not been experimentally identified and were therefore classified as novel ncRNAs. The latter comprise 17 putative sRNAs and 49 putative cis-regulatory ncRNAs. A selection of these candidate ncRNAs was validated by RT-qPCR, Northern blotting and 5' RACE, confirming the existence of 4 ncRNAs. Interestingly, individual transcript levels of numerous ncRNAs varied during free-living growth and during interaction with the eukaryotic host plant, pointing to possible ncRNA-dependent regulation of these specialized processes. CONCLUSIONS: Our data support the practical value of previous ncRNA prediction algorithms and significantly expand the list of candidate ncRNAs encoded in the intergenic regions of R. etli and, by extension, of alpha-proteobacteria. Moreover, we show high-resolution tiling arrays to be suitable tools for studying intergenic ncRNA transcription profiles across the genome. The differential expression levels of some of these ncRNAs may indicate a role in adaptation to changing environmental conditions.


Asunto(s)
Genoma Bacteriano , ARN no Traducido/genética , Rhizobium etli/genética , Algoritmos , Biología Computacional/métodos , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Bacteriano/genética , Análisis de Secuencia de ARN
16.
BMC Microbiol ; 8: 219, 2008 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-19077212

RESUMEN

BACKGROUND: The rel gene of Rhizobium etli (relRet), the nodulating endosymbiont of the common bean plant, determines the cellular level of the alarmone (p)ppGpp and was previously shown to affect free-living growth and symbiosis. Here, we demonstrate its role in cellular adaptation and survival in response to various stresses. RESULTS: Growth of the R. etli relRet mutant was strongly reduced or abolished in the presence of elevated NaCl levels or at 37 degrees C, compared to the wild type. In addition, depending on the cell density, decreased survival of exponentially growing or stationary phase relRet mutant cells was obtained after H2O2, heat or NaCl shock compared to the wild-type strain. Survival of unstressed stationary phase cultures was differentially affected depending on the growth medium used. Colony forming units (CFU) of relRet mutant cultures continuously decreased in minimal medium supplemented with succinate, whereas wild-type cultures stabilised at higher CFU levels. Microscopic examination of stationary phase cells indicated that the relRet mutant was unable to reach the typical coccoid morphology of the wild type in stationary phase cultures. Assessment of stress resistance of re-isolated bacteroids showed increased sensitivity of the relRet mutant to H2O2 and a slightly increased resistance to elevated temperature (45 degrees C) or NaCl shock, compared to wild-type bacteroids. CONCLUSION: The relRet gene is an important factor in regulating rhizobial physiology, during free-living growth as well as in symbiotic conditions. Additionally, differential responses to several stresses applied to bacteroids and free-living exponential or stationary phase cells point to essential physiological differences between the different states.


Asunto(s)
Ligasas/genética , Mutación , Rhizobium etli/fisiología , Estrés Fisiológico , Recuento de Colonia Microbiana , Peróxido de Hidrógeno/metabolismo , Ligasas/metabolismo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Fenotipo , Rhizobium etli/citología , Rhizobium etli/genética , Rhizobium etli/crecimiento & desarrollo , Cloruro de Sodio/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...